Preclinical efficacy of the novel competitive NAMPT inhibitor STF-118804 in pancreatic cancer
نویسندگان
چکیده
NAD salvage is one of the pathways used to generate NAD in mammals. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in this pathway, uses nicotinamide (NAM) to generate nicotinamide mononucleotide (NMN). NMN is one of the main precursors of NAD synthesis in cells. Our previous study showed the importance of NAMPT in maintaining NAD levels in pancreatic ductal adenocarcinoma cells (PDAC), and that the NAMPT inhibitor FK866 decreased pancreatic cancer growth. We now tested the effect of STF-118804, a new highly specific NAMPT inhibitor, in models of pancreatic ductal adenocarcinoma. STF-118804 reduced viability and growth of different PDAC lines, as well as the formation of colonies in soft agar. In addition, STF-118804 decreased glucose uptake, lactate excretion, and ATP levels, resulting in metabolic collapse. STF-118804 treatment activated AMPK and inhibited of mTOR pathways in these cells. This effect was significantly potentiated by pharmacological AMPK activation and mTOR inhibition. Exogenous NMN blocked both the activation of the AMPK pathway and the decrease in cell viability. Panc-1 cells expressing GFP-luciferase were orthotopically implanted on mice pancreas to test the in vivo effectiveness of STF-118804. Both STF-118804 and FK866 reduced tumor size after 21 days of treatment. Combinations of STF-118804 with chemotherapeutic agents such as paclitaxel, gemcitabine, and etoposide showed an additive effect in decreasing cell viability and growth. In conclusion, our preclinical study shows that the NAMPT inhibitor STF-118804 reduced the growth of PDAC in vitro and in vivo and had an additive effect in combination with main current chemotherapeutic drugs.
منابع مشابه
NAD as a genotype-specific drug target.
Using high-throughput chemical and genetic screening, Matheny and colleagues (in this issue of Chemistry & Biology) identified STF-118804, an inhibitor of nicotinamide phosphoribosyltransferase, as a cell type-specific inhibitor of mixed-lineage leukemia with MLL chromosomal rearrangements. The approach was powerful, as is the potential for NAD as a specific cancer target.
متن کاملNAMPT Is the Cellular Target of STF-31-Like Small-Molecule Probes
The small-molecule probes STF-31 and its analogue compound 146 were discovered while searching for compounds that kill VHL-deficient renal cell carcinoma cell lines selectively and have been reported to act via direct inhibition of the glucose transporter GLUT1. We profiled the sensitivity of 679 cancer cell lines to STF-31 and found that the pattern of response is tightly correlated with sensi...
متن کاملTargeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors.
PURPOSE Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth. EXPERIMENTAL DESIGN We used human pancreatic cancer cells, both in vitro (cell culture experiments) and in vivo (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth. RESULTS We demonstrated that pharmacologic ...
متن کاملSelective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells
Endoplasmic reticulum stress from unfolded proteins is associated with the proliferation of pancreatic tumor cells, making the many regulatory molecules of this pathway appealing targets for therapy. The objective of our study was to assess potential therapeutic efficacy of inhibitors of unfolded protein response (UPR) in pancreatic cancers focusing on IRE1α inhibitors. IRE1α-mediated XBP-1 mRN...
متن کاملCancer Therapy: Preclinical Apricoxib, a Novel Inhibitor of COX-2, Markedly Improves Standard Therapy Response in Molecularly Defined Models of Pancreatic Cancer
Purpose: COX-2 is expressed highly in pancreatic cancer and implicated in tumor progression. COX-2 inhibition can reduce tumor growth and augment therapy. Theprecise functionofCOX-2 in tumors remains poorly understood, but it is implicated in tumor angiogenesis, evasion of apoptosis, and induction of epithelial-to-mesenchymal transition (EMT). Current therapeutic regimens for pancreatic cancer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017